

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10

50

1. Short answer questions:
(a) Suppose you write

$$
(x+y)^{2} z^{2}=x^{2}+y^{2} z^{2}
$$

What are the two errors you made?
(1) x and y are terms. Cannot use laws of ex points on terms.
(2) $(x+y)^{2}$ generates three terms $x^{2}+2 x y+y^{2}$ so z^{2} needs to be distributed to each term by the distributive law, nut just
(b) True or false: We can simplify

$$
\frac{(x+1)(x-2)+(x-2)(x+3)}{x+1}
$$

by crossing out the $x+1$.
No because $(x+1)$ is a part of a term in the numerator not a factor in the contact of the entire numerator.
(c) If $f(x)=x^{2}-x$, evaluate $f(-x+h)$ and expand.

$$
\begin{aligned}
f(-x+h) & =(-x+h)^{2}-(-x+h)^{\prime} \\
& =x^{2}-2 x h+h^{2}+x-h
\end{aligned}
$$

(d) Suppose $f(x)=\sin (x)$. Do

$$
g(x)=\sin (x+\pi) \quad h(x)=\sin (2 x+\pi)=\sin \left(2\left(x+\frac{\pi}{2}\right)\right)
$$

have the same horizontal shift? If not, what are both $g(x)$ and $h(x)$'s horizontal shift?
No. $g(x)$ is π units to lot of $f(x)$.

$$
h(x) \text { is } \frac{\pi}{2} \text { units to left of } f(x) \text {. }
$$

2. Suppose

$$
f(x)=1+2 \cos (2 x)
$$

(a) Sketch a graph of $f(x)$.

(b) What is $f(\pi)$?

$$
f(\pi)=1+2 \cos (2 \pi)=1+2 \cdot 1=3
$$

3. Follow the given instruction. Remember to use the relevant laws/properties.
(a) Simplify: $\left(\frac{x+1}{(x-1)}\right)^{2} \cdot\left(\frac{(x-1)(x+1)}{x+2}\right)^{-2}$
$\stackrel{(6)}{=}\left(\frac{x+1}{x-1}\right)^{2} \cdot\left(\frac{x+2}{(x-1)(x+1)}\right)^{2}$
(5) $\frac{(x+1)^{2}}{(x-1)^{2}} \cdot \frac{(x+2)^{2}}{\left(\frac{(x-1)(x+1))^{2}}{\text { factor }}\right.}$
(4) $\frac{(x+1)^{2}}{(x-1)^{2}} \cdot \frac{(x+2)^{2}}{(x-1)^{2}(x+1)^{2}} \underset{\text { law (1) }}{=} \frac{(x+1)^{2}(x+2)^{2}}{\frac{(x-1)^{2}}{(x-1)^{2}(x+1)^{2}}} \stackrel{\text { foE (1) }}{=} \sqrt[(x+2)^{2}]{(x-1)^{4}}$
and looking for terms. You cant use Lo on terms. No Lav out of the seven we know has any terms include.

$$
\begin{aligned}
& \text { (b) Expand: }(x-2)^{2}(x+3)+(x-3)(x+2) \\
& (A-B)^{2} \\
& \underset{\text { dist }}{=} \frac{\left(x^{2}-4 x+4\right)(x+3)}{(L-3)}
\end{aligned}
$$

dist

$$
\underset{\text { law }}{=}\left(x^{2}-4 x+4\right) x+\left(x^{2}-4 x+4\right) 3+x^{2}-3 x+2 x-6
$$

$\frac{\text { dist }}{\text { law }} x^{3}-4 x^{2}+4 x+3 x^{2}-12 x+12+x^{2}-x-6$

$$
=x^{3}-9 x+6
$$

(c) Completely factor (you should have four factors): $x^{4}-5 x^{2}+4$

Let $y=x^{2}$. Then

$$
\begin{aligned}
x^{4}-5 x^{2}+4 & \stackrel{L_{0} E}{3}\left(x^{2}\right)^{2}-5 x^{2}+4 \\
& =y^{2}-5 y+4 \\
& =(y-4)(y-1) \\
& =\left(x^{2}-4\right)\left(x^{2}-1\right) \\
A^{2}-B^{2} & =(x-2)(x+2)(x-1)(x+1)
\end{aligned}
$$

4. Let

$$
f(t)=\sin (t) \quad g(t)=\cos (t)
$$

Find the following:
(a)

$$
\begin{aligned}
f(\pi \cdot g(0))=f(\pi \cdot \cos (0)) & =f(\pi \cdot 1) \\
& =\sin (\pi) \\
& =0
\end{aligned}
$$

(b) $f\left(\frac{-11 \pi}{6}\right)=\sin \left(-\frac{11 \pi}{6}\right)=+\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$

(c) $g\left(\frac{5 \pi}{4}\right)=\cos \left(\frac{5 \pi}{4}\right)=-\cos \left(\frac{\pi}{4}\right)=1-\frac{\sqrt{2}}{2}$

(d) What is the domain of $f(t)+g(t)$?
$f(t)=\sin (t)$ has domain $\frac{R}{R}$
$g(t)=\cos (t)$ has domain R
$f(t)+g(t)=\sin (t)+\cos (t)$ has domain $\mathbb{R} \cap \mathbb{R}=\mathbb{R}$
(e) If $f(t)=-\frac{4}{5}$ and the terminal point of t is in Quadrant IV, what is $g(t)$?

$$
\begin{gathered}
\text { using } \sin ^{2}(t)+\cos ^{2}(t)=1 \\
\left(-\frac{4}{5}\right)^{2}+\cos ^{2}(t)=1 \\
\frac{16}{25}+\cos ^{2}(t)=1
\end{gathered} \quad \begin{aligned}
& \cos ^{2}(t)=1-\frac{16}{25}=\frac{25}{25}-\frac{16}{25} \\
& \\
& \\
&
\end{aligned} \quad \begin{aligned}
& \cos ^{2}(t)=\frac{95-18}{25} \\
& \cos (t)= \pm \sqrt{\frac{9}{25}}= \pm \frac{\sqrt{9}}{\sqrt{25}}= \pm \frac{3}{5} \\
& \cos (t) \text { is }+i n \pi \\
& \operatorname{son} \cos (t)=\frac{3}{5}
\end{aligned}
$$

goal: $x=\ldots$
5. Solve for x and remember to check your work if necessary:

Get x out of

$$
\frac{1}{x-1}-\frac{2}{x^{2}}=0
$$

denominator.

$$
\begin{aligned}
& \frac{(x-1) x^{2}\left(\frac{1}{x-1}-\frac{2}{x^{2}}\right)=0 \cdot(x-1) x^{2}}{} \\
& \begin{array}{r}
(x-1) x^{2} \cdot \frac{1}{x-1}-(x-1) x^{2} \cdot \frac{2}{x^{2}}=0 \\
\qquad \text { from law (1) then(5) }
\end{array} \\
& \times 1-2(x-1)=0 \\
& \int \text { dist law } \\
& x^{2}-2 x+2=0 \\
& a=1, b=-2, c=2 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot 2}}{2.1} \\
& =\frac{2 \pm \sqrt{4-8}}{2} \\
& =\frac{2 \pm \sqrt{-4}}{2} \leftarrow i_{\substack{\text { far } \\
\text { formect counts as }}} \\
& =\frac{2 \pm i \sqrt{4}}{2} \\
& =\frac{2 \pm 2 i}{2} \\
& \text { GCc }=\frac{2(1 \pm i)}{2} \\
& \text { fran low }=1 \pm i
\end{aligned}
$$

